

B: Organic Chemistry

Paper II - Physical and organic Chemistry B.Sc. Part I (Honours)

By Sonu Ram Shankar Assistant Professor Department of Chemistry

Marwari College, Darbhanga

A constituent Unit of Lalit Narayan Mithila University, Kameshwar Nagar, Darbhanga

Secondary Isotope Effect

When H is replaced with D

In $S_N 1$ increases rate of reaction Reason: D has more +I effect than H thus stabilises the intermediate

In S_N^2 it slows down the rate Reason: D increases activation energy

Effect of carbonyl

Leaving group is on α position to carbonyl (>CX-CO-)

- $S_N 1$ slows due to resonance
- S_N^2 becomes faster due to +ve charge on α carbon

Effect of carboxyl (>CX-COO⁻)

- S_N1 faster Reason: +I effect
- S_N^2 slower Reason: negative charge on α -carbon

Effect of heavy metal (Ag⁺)

- $S_N 1$ faster
 - Reason: coordination between Ag⁺ and the intermediate

Effect of halide

On rate

-I > -Br > -CI

Reason:

- Stearic strain due to volume
- Polarizability of C-X bond

```
Catalysis by I<sup>-</sup> in case of Br<sup>-</sup> and Cl<sup>-</sup> leaving group
High activation energy
R-X + OH<sup>-</sup> \rightarrow R-OH
Low activation energy
R-X + I<sup>-</sup> \rightarrow R-I
R-I + OH<sup>-</sup> \rightarrow R-OH + I<sup>-</sup>
```

Effect of nucleophile

Nucleophilicity: ability to form bond with carbon

Strong nucleophile favour S_N^2 Weak nucleophile favour S_N^1

Strength of nucleophile : $PhS^- > CN^- > I^- > EtO^- > OH^- > Br^- > PhO^- > CI^- > R_3N$:

Nucleophilicity Vs Basicity Nucleophilicity is kinetic property Basicity is thermodynamic property

Rate with PhS⁻ > EtO⁻ due to Higher polarizability and Solvation

Effect of -R

Size of R

Larger the group $S_N 1$ is favour over $S_N 2$

Reason:

Increased steric crowding in 5 cordinated transition state decreases rate of S_N^2 Decreased steric crowding in 3 cordinated intermediate increases rate of S_N^1

Example:

R-Br + I⁻ →R-I			in acetone solvent, mechanism; S _N 2			
Methyl	>	Ethyl	>	isopropyl	>	t-butyl
10000	>	65	>	0.5	>	0.0039

Number of Rn-butyl>isobutylt-butyl1>0.04>10^{-5}

When leaving group is on bridgehead (1-chloro apacamphene) Non viability of planarity of intermediate slows S_N1 Non viability of attack slow S_N2

If the number of carbons in bridge increases there is relaxation in bridge strain $\rm S_{N}1$ becomes faster.

Effect of solvent

Two properties have effect; dielectric constant and solvation Dielectric constant: it increases ionization Solvation: solute-solvent interaction based on polarity

Solvent	Dielectric constant	Polarity (Debye, D)
Water	81.1	2-3
Formic acid	48.0	1.5
Nitrobenzene	37.7	4.0
Ethanol	25.8	1.7
Acetone	21.3	3
AcOH	7.1	1.5
Chloroform	4.6	1.1
Diethyl ether	4.3	1.25
Benzene	2.3	0
Carbon tetra chloride	2.2	0

Detailed process of ionization

 $R-X \rightarrow R^+X^-$ (intimate ion pair)

 $R^+X^- \rightarrow R^+ || X^-$ (Extended ion pair) (favoured in low polar solvents)

 $R^+||X^- \rightarrow R^+ + X^-$ (dissociated ions) affected by common ion (salt effect)

Evidence of salt effect

 $\text{R-OTs} + \text{AcOH} \rightarrow \text{R-Oac}$

Rate of this reaction increases in presence of LiBr.

 $\begin{array}{ll} R\text{-}OTs \rightarrow R^+ \ OTs^- & R^+ \ OTs^- \\ R^+ \ | \ OTs^- \rightarrow R^+ \ + \ OTs^- & R^+ \ | \ OTs^- + LiBr \rightarrow R^+ \ | \ Br^- + Li^+ \ + \ OTs^- \end{array}$

This shifts the equilibrium towards intermediate.